& TANIUM

Tanium Cryptographic Module v1.0 FIPS 140-2
Non-Proprietary Security Policy

Document Revision 0.6

08/10/2016

Prepared for:
Tanium, Inc.

2200 Powell Street, 6th Floor, Emeryville, CA 94608

Prepared By:

P Gossamer

L lrcrrat-or s

www.gosSsamersec.com

© 2016 Copyright Tanium, Inc.
Tanium, Inc. grants permission to freely reproduce in entirety without revision

& TANIUM"

Revision 0.66, 08/10/2016

REVISION HISTORY

Revision Date
4/28/2014

Authors
Khai Van

Summary

Initial draft

4/15/2016

Khai Van

Updated

4/20/2016

Khai Van

Updated based on comments

6/10/2016

Khai Van

Updated based on CMVP comments

8/1/2016

Khai Van

Updated OE to state vendor affirmed platforms

8/10/2016

Khai Van

Added ECDH keys back into SP

Tanium Cryptographic Module
Security Policy

Page 2 of 18 © 2016 Copyright Tanium, Inc.
All rights reserved.

S TANIUM N
Revision 0.66, 08/10/2016

TABLE OF CONTENTS

1. Introduction
2. Tanium Cryptographic Module
2.1 Module Specification
2.1.1 Security Level
2.1.2 FIPS Mode of Operation
2.1.3 Approved Cryptographic Algorithms
2.1.4 Non-Approved Cryptographic Algorithms Allowed In FIPS Mode
2.1.5 Non-Approved Cryptographic Algorithms Not Allowed in FIPS Mode
2.2 Module Interfaces
2.3 Roles, Services and Authentication
24 Finite State Model
2.5 Physical Security
2.6 Operational Environment
2.7 Key Management
2.8 Electromagnetic Interference and Compatibility
2.9 Self-Tests
291
2.9.2
2.10 Guidance and Secure Operation
2.10.1 Crypto-office Guidance
2.10.2 User Guidance

2.11 Mitigation of Other Attacks

Tanium Cryptographic Module Page 3 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

& TANIUM"
Revision 0.66, 08/10/2016

1. INTRODUCTION

This non-proprietary FIPS 140-2 security policy for the Tanium Cryptographic Module details the secure
operation of the Tanium Cryptographic Module as required in Federal Information Processing Standards
Publication 140-2 (FIPS 140-2) as published by the National Institute of Standards and Technology (NIST)
of the United State Department of Commerce. This document, the Cryptographic Module Security
Policy (CMSP), also referred to as the Security Policy, specifies the security rules under which the Tanium
Cryptographic Module must operate.

The Tanium Cryptographic Module underpins Tanium's security management platform. Tanium's
platform is a security and configuration management solution that provides instant visibility and allows
enterprises to collect data and update machines in any-sized network, in seconds. Tanium's platform is
able to query information from hundreds of thousands of machines in seconds because of its intelligent
peer-to-peer communication model. This speed means that information is current and accurate when
assessing a security threat or vulnerability. Its next-generation architecture also allows enterprises to
fully deploy a real-time environment in a matter of days and run a single Tanium server to support
hundreds of thousands of endpoints.

Tanium Cryptographic Module Page 4 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

S TANIUM N
Revision 0.66, 08/10/2016

2. TANIUM CRYPTOGRAPHIC MODULE

I 2.1 MODULE SPECIFICATION

The Tanium Cryptographic Module (Version v1.0) (hereinafter referred to as the “Library”,
“cryptographic module” or the “module”) is a software only cryptographic module composed of an
interface DLL containing cryptographic functionality executing on a general-purpose computer system
running Microsoft Windows. The module is named TaniumCryptoLibrary.dll and the signature file is
named TaniumCryptolLibrary.dll.sig.

The physical perimeter of the general-purpose computer (GPC) comprises the module’s physical
cryptographic boundary, while the Tanium Cryptographic Module DLL constitutes the module’s logical
cryptographic boundary.

Physical Cryptographic Boundary (General Purpose Computer)

Microsoft Windows Operating System

Calling Applications

Calling Application

Entropy Source
Module Py

Interface DLL
BCRYPTPRIMITIVES.

DLL

Logical Cryptographic Boundary

B e

Figure 1 - Logical Diagram
*PT = Plaintext, CT = Ciphertext

2.1.1 SECURITY LEVEL

The Tanium Cryptographic Module meets the overall requirements applicable to Level 1 security overall
of FIPS 140-2 and the below specified section security levels.

Tanium Cryptographic Module Page 5 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

@ TANIUM" .
Revision 0.66, 08/10/2016

Table 1 - Module Security Level Specification

FIPS 140-2 Section Level

1 | Cryptographic Module Specification

2 | Cryptographic Module Ports and Interfaces
3 Roles, Services, and Authentication

4 | Finite State Model

5 | Physical Security
6

7

8

9

Operational Environment
Cryptographic Key Management
EMI/EMC

Self-tests

10 | Design Assurance

11 | Mitigation of Other Attacks
Overall Level

] 2.1.2 FIPS MODE OF OPERATION
The Tanium Cryptographic Module utilizes only FIPS-Approved algorithms to ensure FIPS compliant

operation. As a result, the operator need not adhere to any rules to utilize the module in a FIPS
compliant fashion.

I 2.1.3 APPROVED CRYPTOGRAPHIC ALGORITHMS

The module uses cryptographic algorithm implementations that have received the following certificate
numbers from the Cryptographic Algorithm Validation Program.

Table 2 — FIPS-Approved Algorithm Certificates

Algorithm Modes and Key/Curve Sizes CAVP Certificate when operating on

Microsoft Windows

32-bit and 64-bit

FIPS 186-4 ECDSA PKV, SigGen, SigVer; P-521
SP 800-90A DRBG AES-256 CTR
Secure Hash Standard (SHS) SHA-1/224/256/384/512
HMAC SHA-1/224/256/384/512
AES ECB/CBC/GCM; 128/256 bits
SP 800-135 TLS 1.0/1.1/1.2 KDF
ECC CDH Primitive EC-Diffie-Hellman; P-521

NOTE: The TLS protocol has not been reviewed or tested by the CAVP and CMVP.

] 2.1.4 NON-APPROVED CRYPTOGRAPHIC ALGORITHMS ALLOWED IN FIPS MODE
NDRNG

Tanium Cryptographic Module Page 6 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

& TANIUM N
Revision 0.66, 08/10/2016

NOTE: The NDRNG is classified as the module’s entropy source for its Approved DRBG. It is a non-
Approved algorithm allowed for use in FIPS mode.

Additionally, the module obtains entropy from the 140-2 validated BCRYPTPRIMITIVES provider in its
Windows operational environment. As described in the BCRYPTPRIMITIVES Security Policy, the
BCRYPTPRIMITIVES.DLL module generates cryptographic keys whose strengths are modified by available
entropy, and thus, the Tanium Cryptographic Module also must generates cryptographic random
numbers and signatures (as the Tanium Cryptographic Module does not generate any keys) whose
strengths are modified by available entropy.

The following maps the BCRYPTPRIMITIVES versions to the respective platforms used to test the Tanium
Cryptographic Module

Windows 7 (32-bit) 140-2 Validation certificate #1329:
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm#1329

Windows 7 (64-bit) 140-2 Validation certificate #1329:
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm#1329

Windows Server 2008 R2 140-2 Validation certificate #1336:
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm#1336

Windows Server 2012 140-2 Validation certificate #1892:
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2013.htm#1892

] 2.1.5 NON-APPROVED CRYPTOGRAPHIC ALGORITHMS NOT ALLOWED IN FIPS MODE

The module does not use any non-FIPS 140-2 approved cryptographic algorithms. The module only
utilizes FIPS-Approved cryptography.

I 2.2 MODULE INTERFACES

The module is classified as a multiple-chip standalone module for FIPS 140-2 purposes. As such, the
module’s physical cryptographic boundary encompasses the general-purpose computer running the
Microsoft Windows operating system and interfacing with the computer peripherals (USB devices
[keyboard and mouse], video devices [monitors, screens, camera], optical drives, audio devices
[speakers, headset, and microphone], network devices [Ethernet and Wireless adapters], and power
adapter).

However, the module provides only a logical interface via an Application Programming Interface (API)
and does not interface or communication with or across any of the physical ports of the GPC. This
logical interface exposes service that operators (calling applications) may use directly.

Tanium Cryptographic Module Page 7 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm#1329
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm#1329
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm#1336
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2013.htm#1892

& TANIUM"

Revision 0.66, 08/10/2016

The APl interface provided by the module is mapped onto the four FIPS 140-2 logical interfaces: data

input, data output, control input, and status output.

It is through this logical APl that the module

logically separates them into distinct and separate interfaces. The mapping of the module’s API to the

four FIPS 140-2 interfaces is as follows.

Data input — input arguments to all constructors and functions specifying input parameters

Data output — modified input arguments (those passed by reference) and return values for all

constructors and methods modifying input arguments and returning values

Control input — invocation of all methods

Status output — information returned by the GetStatus and GetVersionString methods and any

exceptions thrown by constructors and methods.

I 2.3 ROLES, SERVICES AND AUTHENTICATION

The module supports both of the FIPS 140-2 required roles, the Crypto-officer and the User role, and

supports no additional roles. An operator implicitly selects the Crypto-officer role when loading (or

causing loading of) the library and selects the User role when soliciting services from the module

through its API. The module requires no operator authentication, and the below table enumerates the

module’s services.

Table 3 - Service Descriptions for Crypto-officer and User Roles

Service
Crypto-Officer services

Type!

Description

Library Loading The process of loading the shared library

User services

NewTaniumCryptoLibraryCryptosystem

Creates a new crypto system instance

CheckCryptosystemCorrectness

Runs integrity checks for the module

DefaultHashName

Returns the default hash name

GenerateWord32

Returns a 32-bit random bitstring

GetVersionString

Initializes a new instance of the Class

GetStatus

HashCreator

Returns FIPS state of the module

Returns a new object instance

~HashCreator

Destructs the object

MaximumTokenSize

Maximum Size of SHA Hashing instance

CreateToken

Create hash token from message and range

UpdateToken

Update hash token of message with range

GetFinalToken

HashVerifier

Return final hash token of message

Returns a new object instance

Verify

Take message and hash and verify

1 (C)onstructor, (D)estructor, or Member (F)unction

Tanium Cryptographic Module
Security Policy

Page 8 of 18

© 2016 Copyright Tanium, Inc.
All rights reserved.

@ TANIUM"

Service

~PrivateKey

Revision 0.66, 08/10/2016
Description

Destroys an object instance

WritePKCS8

Create PKCS8 object of Private Key

Clone

Return clone of private key object

CreatePublicKey

Derive public key from Private Key

CreateSigner

Instantiate signing object from Private Key

CreateMatchingHashCreator

Instantiate HashCreator matching the key type

CreateMatchingHashVerifier

~PublicKey

M MMM || M| O

Instantiate HashVerifier matching the key type

Destroys an object instance

WriteX509

Create X509 object of Public Key

Clone

Return clone of Public Key Object

CreateVerifier

Instantiate Verifier object with Public Key

CreateMatchingHashCreator

Instantiate HashCreator matching the key type

CreateMatchingHashVerifier

~AuthenticationCreator

M| MMM M| O

Instantiate HashVerifier matching the key type

Destroys an instance of the object

MaximumTokenSize

Returns the maximum size of a token

CreateToken

Abstract base class

CreateToken

Creates a digesttoken based on an input message

UpdateToken

Updates digest in the token

GetFinalToken

| ~Authenticationverifier |

M MMM ™| O

Returns a constructed tokendigest

Destroys an instance of the object

Verify

Matches message based on input

Verify

SignatureVerifier

Matches message based on AuthenticationToken

Creates an object based on public key and hash name

Verify

Signer

Verify signature matches message

Creates new object instance

MaximumTokenSize

Return Maximimum Signature length for Signer

CreateToken

Create signature from message

UpdateToken

Update signature

GetFinalToken

HashCache

MM (MmO

Finalize signature

Creates a new object instance

HashCache

Creates a new object with number of entries and size

swap

Replaces data in cache with another

clear

Dissasociates data and memory location

resize

Resizes buffer

size

Returns counts or size of cache

EntrySize

Returns size of each cache entry

Locate

Returns location of given constant

Match

Attempts to match location with value

CachingSignatureVerifier

i B R i R H i s R R N)

Inserts value into location supplied

Creates a new object instance

swap

Replaces data in cache with another

SetCacheSize

Resizes the cache

Verify

SSLContext

ikl e}

Verifies the signature

Returns a new object with input flags

Tanium Cryptographic Module

Security Policy

Page 9 of 18 © 2016 Copyright Tanium, Inc.
All rights reserved.

& TANIUM"

Service
SSLContext

Typel
C

Revision 0.66, 08/10/2016

Description
Creates a new object based on context input

~SSLContext

Destroys an object instance

CreateSSLConnection

Returns a new SSL connection

Reset

SSLConnection

M| ™| O

Flushes connection details

Returns a new object instance

~SSLConnection

Destroys an object instance

Connect

Connect as client. Also populates handshake data

SubmitincomingEncodedData

Receives encoded data and handshake sent from peer

ReadIncomingClearData

Reads app-level decoded data

SubmitOutgoingClearData

Receives data to be encoded and sent to peer

ReadOutgoingEncodedData

Reads encoded data to be sent

HasOutgoingEncodedData

Returns true if outgoing data buffer is not empty

HasPendingData

Returns true if object’s buffers are not empty

ClearPendingData

Dissasociates buffer data and memory location

Shutdown

Flushes object’s buffers and shuts down function

GetPeerCertificate

Cryptosystem

|

Collects Peer’s certificate if connected

Creates a new object instance

~Cryptosystem

Destroys an object instance

GenerateWord32

Generates a 32 bit integer

DefaultHashName

Returns the string “SHA-512"

GetVersionString

Returns OpenSSL version

GetStatus

Returns self-test status of CryptoSystem object

CreateHashCreator

Creates a HashCreator based on hash name

CreateHashCreator

Creates a HashCreator based on default hash name

CreateHashVerifier

Creates a new HashVerifier based on hash name

ReadPrivateKeyInPKCS8

Creates PKCS8 PrivateKey

ReadPublicKeylnX509

Creates x509 PublicKey

ReadCertificateX509

Creates x509 Certificate

CreateClientSSLContext

Creates new SSL context as a client

CreateServerSSLContext

CertificateExtension

(@]

Creates new SSL context as a server

Creates an object instanceAdds extension value to certificate
object

CertificateExtension

Adds extension value to certificate object

~CertificateExtension

Destroys an object instance

GetNID

Returns ID in Certificate object

GetName

Returns name in Certificate object

GetNameSize

Returns size of name in Certificate object

GetValue

Returns value in Certificate object

GetValueSize

Certificate

Returns size of value in Certificate object

Creates a new x509 object

Certificate

Creates an x509 object from an x509 pointer

~Certificate

Destroys an object instance

GetPEM

Returns PEM from Certificate object

GetSubject

Returns subject from Certificate object

Getlssuer

Returns issuer from Certificate object

GetNotAfterDateStr

Returns not after date from Certificate object

GetNotBeforeDateStr

Returns not before date from Certificate object

GetSerialNumber

Returns serial nmber from Certificate object

GetFingerprint

Returns fingerprint from Certificate object

Tanium Cryptographic Module

Security Policy

Page 10 of 18 © 2016 Copyright Tanium, Inc.
All rights reserved.

@ TANIUM" .
Revision 0.66, 08/10/2016

Service Typel Description

GetVersion F Returns version from Certificate object
GetExtensionCount F Returns number of extensions from Certificate object
GetExtension F Returns extension name from Certificate object
SSLReadWriteError C Adds error code to a string
what F Returns string
~SSLReadWriteError D Destroys an object instance

Table 4 - Service Inputs and Outputs

Service Data Input Data Output CspP Access® = Status Out
Crypto-Officer services

User services } } }
DefaultHashName N/A Hash name N/A Exception

GenerateWord32 N/A Random N/A Exception

number
GetVersionString N/A Version N/A Exception
NewTaniumCryptoLibraryCryptosyste Public Key, CryptoSystem ECDSA public Exception
m FIPS flag, & key
crypto object
CheckCryptosystemCorrectness N/A N/A ECDSA public Exception
key
GetStatus N/A N/A N/A Exception

HashCreator Hash name Instance ref N/A Exception
~HashCreator N/A N/A N/A Exception
MaximumTokenSize N/A Size of token N/A Exception
CreateToken Buffer & msg Resultant hash N/A Exception
(single step)
UpdateToken Msg Intermediate N/A Exception
hash (multi-
stage)
GetFinalToken Resultant hash N/A Exception
(final-stage)
HashVerifier Hash name Instance ref N/A Exception
Verify Digest & msg Result N/A Exception

~PrivateKey N/A N/A N/A Exception
WritePKCS8 PKCS8 private ECDSA private Exception
key key
Clone N/A Instance ref ECDSA private Exception
key
CreatePublicKey N/A Instance ref ECDSA private Exception
key
CreateSigner N/A Instance ref ECDSA private Exception
key

2 (G)enerate, (R)ead, (W)rite, e(X)excute, (Z)eroize

Tanium Cryptographic Module Page 11 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

& TANIUM"

Service
CreateMatchingHashCreator

N/A

\ Data Input \Data Output

Instance ref

N/A

Revision 0.66, 08/10/2016

Access? Status Out

Exception

CreateMatchingHashVerifier

~PublicKey

-

N/A

N/A

Instance ref

N/A

N/A

N/A

Exception

Exception

WriteX509

Stream pointer

X.509 public key

ECDSA public
key

Exception

Clone

N/A

Instance ref

ECDSA public
key

Exception

CreateVerifier

N/A

Instance ref

ECDSA public
key

Exception

CreateMatchingHashCreator

N/A

Instance ref

ECDSA public
key

Exception

CreateMatchingHashVerifier

CreateToken

I

N/A

Message

Instance ref

Token

ECDSA public
key

N/A

Exception

Exception

~AuthenticationCreator

N/A

N/A

N/A

Exception

MaximumTokenSize

N/A

size_t

N/A

Exception

CreateToken

Message and
SplitOctetBuffer

Octet range

N/A

Exception

UpdateToken

Message

N/A

N/A

Exception

GetFinalToken

~AuthenticationVerifier

I

Octet buffer

N/A

N/A

N/A

N/A

N/A

Exception

Exception

Verify

Token range &
msg

Result

N/A

Exception

Verify

SignatureVerifier

]

Token & msg

Public Key &
hash name

Result

Instance ref

N/A

ECDSA public

key

Exception

Exception

Verify

Signer

Signature & msg

PrivateKey
instance & hash
name

Result

Instance ref

ECDSA public
key

ECDSA private
key

Exception

Exception

MaximumTokenSize

N/A

Max private key
length

ECDSA private
key

Exception

CreateToken

Buffer & Msg

Instance ref

ECDSA private
key

X

Exception

UpdateToken

Msg

Exception

N/A

N/A

Exception

GetFinalToken

HashCache

Buffer

N/A

Exception

N/A

N/A

N/A

N/A

N/A

Exception

Exception

HashCache

Number of
entries & size of
entries

Instance ref

N/A

N/A

Exception

swap

HashCache
object

N/A

N/A

N/A

Exception

clear

N/A

N/A

N/A

N/A

Exception

resize

Number of
entries & size of
entries

Instance ref

N/A

N/A

Exception

N/A

Integer

N/A

N/A

Exception

Tanium Cryptographic Module
Security Policy

Page 12 of 18

© 2016 Copyright Tanium, Inc.
All rights reserved.

@ TANIUM" .
Revision 0.66, 08/10/2016

Service \ Data Input \ Data Output Access? \ Status Out
EntrySize N/A Integer Exception
Locate Octet range Integer Exception
Match Integer & Octet Result Exception
range
Put Integer & Octet Instance ref Exception
range

CachingSignatureVerifier N/A N/A Exception
swap Object instance N/A Exception
SetCacheSize New hash cache Instance ref Exception
size
Verify Signature & msg Result Exception

SSLContext cert path, key Instance ref Exception
path, cipher
order flag,
ciphersuite
string, peer CA
file string, client
flag
SSLContext SSLContext Instance ref N/A Exception
object
~SSLContext N/A N/A N/A Exception
CreateSSLConnection N/A N/A N/A Exception
Reset N/A N/A N/A Exception
[|
Connect N/A Result N/A Exception
SSLConnection SSLContext Instance ref N/A Exception
pointer & client
flag
~SSLConnection N/A N/A N/A Exception
SubmitincomingEncodedData Data N/A N/A Exception
ReadIncomingClearData Buffer Buffer contents N/A Exception
SubmitOutgoingClearData Data N/A N/A Exception
ReadOutgoingEncodedData Buffer Buffer contents N/A Exception
HasOutgoingEncodedData N/A Result N/A Exception
HasPendingData N/A Result N/A Exception
ClearPendingData N/A N/A N/A Exception
Shutdown N/A N/A N/A Exception
GetPeerCertificate N/A certificate N/A Exception

pointer

Cryptosystem N/A Instance ref N/A Exception
~Cryptosystem N/A N/A N/A Exception
GenerateWord32 N/A Random N/A Exception
number
DefaultHashName N/A String N/A Exception
GetVersionString N/A String N/A Exception
GetStatus N/A Result N/A Exception
CreateHashCreator N/A Instance ref N/A Exception
CreateHashCreator Hash name Instance ref N/A Exception
CreateHashVerifier Hash name Instance ref N/A Exception
ReadPrivateKeylnPKCS8 Stream ECDSA private ECDSA private Exception
key key

Tanium Cryptographic Module Page 13 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

& TANIUM"

Service
ReadPublicKeyInX509

Data Input
Stream

Data Output
ECDSA public
key

ECDSA public
key

Revision 0.66, 08/10/2016

Access? Status Out
Exception

ReadCertificateX509

Stream

x509 certificate

ECDSA public
key

Exception

CreateClientSSLContext

cert path, key
path, cipher
order flag,
ciphersuite
string, peer CA
file string, client
flag

Instance ref

N/A

Exception

CreateClientSSLContext

cert path, key
path, cipher
order flag,
ciphersuite
string, peer CA
file string

Instance ref

Exception

CreateClientSSLContext

cert path, key
path, cipher
order flag,
ciphersuite
string

Instance ref

Exception

CreateServerSSLContext

cert path, key
path, cipher
order flag,
ciphersuite
string, peer CA
file string, client
flag

Instance ref

Exception

CreateServerSSLContext

cert path, key
path, cipher
order flag,
ciphersuite
string, peer CA
file string

Instance ref

Exception

CreateServerSSLContext

CertificateExtension

cert path, key
path, cipher
order flag,
ciphersuite
string

N/A

Instance ref

Instance ref

N/A

Exception

N/A Exception

CertificateExtension

name ID, name,
name size,
value, value size

Instance ref

N/A

N/A Exception

~CertificateExtension

N/A

N/A

N/A

N/A Exception

GetNID

N/A

Name ID

N/A

N/A Exception

GetName

N/A

Name

N/A

N/A Exception

GetNameSize

N/A

Name size

N/A

N/A Exception

GetValue

N/A

Value

N/A

N/A Exception

GetValueSize

Certificate

Certificate

N/A

I

Stream

Value size

Instance ref

N/A

N/A

N/A Exception

]

N/A Exception

Certificate

x509 object

pointer

Instance ref

N/A

N/A Exception

Tanium Cryptographic Module
Security Policy

Page 14 of 18

© 2016 Copyright Tanium, Inc.
All rights reserved.

@ TANIUM" .
Revision 0.66, 08/10/2016

Service \ Data Input \ Data Output Access? \ Status Out \
~Certificate N/A N/A Exception
GetPEM N/A PEM string Exception
GetSubject N/A Subject Exception
Getlssuer N/A Issuer Exception
GetNotAfterDateStr N/A Not after date Exception
GetNotBeforeDateStr N/A Not before date Exception
GetSerialNumber N/A Serial number Exception
GetFingerprint N/A Fingerprint Exception
GetVersion N/A Version Exception
GetExtensionCount N/A integer Exception
GetExtension Index integer Value at index Exception
(SSLReadWriteError I
SSLReadWriteError String & error N/A Exception
code
what N/A String Exception
~SSLReadWriteError N/A N/A Exception

I 2.4 FINITE STATE MODEL

The module has a Finite State Model (FSM) that descrbes the module’s behavior and transitions based

upon its current state and the command received. The module’s FSM was reviewed as part of the
overall FIPS 140-2 validation.

I 2.5 PHYSICAL SECURITY

The physical security requirements does not apply to the module. The module is a software-only
module that executes upon a general-purpose computer.

I 2.6 OPERATIONAL ENVIRONMENT

The module executes on a general purpose operating system running in single user mode that
segregates processes into separate process spaces. Thus, the operating system separates each process
space from all others. The below table listed the specific Microsoft Windows operating systems upon
which validation testing was performed and the associated FIPS 140-2 certificate number for the
Microsoft Windows Cryptographic Primitives Library (BCRYPTPRIMITIVES) upon which the module relies
on for entropy.

Table 5 - Validated Operational Environments

Operating System and Test Platform \ 140-2 Cert.# \
Microsoft Windows 7 (32-bit) running on a Dell PowerEdge R430 (single-user 1329
mode)
Microsoft Windows 7 (64-bit) running on a Dell PowerEdge R430 (single-user 1329
mode)
Microsoft Windows Server 2008 R2 (64-bit) running on a Dell PowerEdge R430 1336
(single-user mode)

Tanium Cryptographic Module Page 15 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

& TANIUM"

Revision 0.66, 08/10/2016

Microsoft Windows Server 2012 (64-bit) running on a Dell PowerEdge R430
(single-user mode)

1892

In addition, the module is also able to execute on the above same four operating systems running as

virtual guest operating systems atop VMWare Server version 5.5 on a Dell PowerEdge R430. As no

validation testing has been executed on these operational environments, they are considered vendor

affirmed. The module follows porting rules under FIPS 140-2 Implementation Guidance G.5.

I 2.7 KEY MANAGEMENT

The module possesses only one key, its self-integrity test ECDSA Public key. Beyond that key, the

module does not store any other keys persistently, and it is the calling applications responsibility to

appropriately manage keys. The module cannot generate keys but can accept keys entered by an

operator, and affords an operator the ability to zeroize keys held in RAM. The following table describes

the module’s Security Relevant Data Items (SRDI’s) including asymmetric and symmetric keys.

Table 6 - Module Keys

ECDSA
public key

521 bits

Description
Asymmetric keys used for
signature verification.

Origin
Entered by
calling
application

Stored
RAM /
plaintext

\ Zeroized
Zeroize
context

ECDSA
private
key

521 bits

Asymmetric keys used for
signature generation

Entered by
calling
application

Zeroize
context

RAM /
plaintext

DRBG
Seed

Seed

384 bits

Entropy input

Entropy
source

Zeroize
context

RAM /
plaintext

DRBG Key

AES-256

256 bits

Key value used in DRBG

Random data

RAM /
plaintext

Zeroize
context

DRBG V

Secret

128 bits

Secret internal state value

Random data

RAM /
plaintext

Zeroize
context

TLS Pre-
Master
secret

TLS
Secret

384 bits

Secret value generated by
the client to be sent via key
exchange

DRBG output

RAM /
plaintext

Zeroize
context

TLS
Master
secret

TLS
Secret

384 bits

Master secret derived from
Pre-Master secret

Derived from
Pre-Master
secret

RAM /
plaintext

Zeroize
context

TLS
Session
keys

TLS
Session
key

128,
192.256
bits

Session encryption keys
derived from Master secret

Derived from
Master secret

RAM /
plaintext

Zeroize
context

HMAC
keys

HMAC

14 to
256
bytes

Keys used for keyed hashing

Derived from
TLS key
exchange

RAM /
plaintext

Zeroize
context

AES keys

AES ECB,
CBC,
GCM

128,
256 bits

Keys used for
encryption/decryption

Derived from
TLS key
exchange

RAM /
plaintext

Zeroize
context

Tanium Cryptographic Module

Security Policy

Page 16 of 18

© 2016 Copyright Tanium, Inc.

All rights reserved.

S TANIUM N
Revision 0.66, 08/10/2016

Self- ECDSA 521 bits | ECDSA Public key used by the Compiled Module N/A
integrity module for it’s power up into the image (see 140-2
Pub Key integrity test module 1G 7.4)

ECDH EC Diffie- | 521 bits Public key used for key Entered by RAM / Zeroize
public key | Hellman establishment calling plaintext context
application

EC DH EC Diffie- | 521 bits Private key used for key Entered by RAM / Zeroize
private Hellman establishment calling plaintext context
key application

I 2.8 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY

The module meets level 3 security for FIPS 140-2 EMI/EMC requirements as the Tanium Cryptographic
Module passed validation executing upon general-purpose computers that confirm to the EMI/EMC
requirements specific by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators,
Digital Devices, Class B (i.e., for home use).

I 2.9 SELFTESTS

The module automatically performs a complete set of power-up self-tests during library load to ensure
proper operation, thus an operator has no access to cryptographic functionality unless the power-up
self-tests pass and the library load succeeds. The module performs the following self-tests:

] 2.9.1 POWER-UP SELF-TESTS:

ECDSA P-521 sign/verify test

ECDH KAT

AES encrypt KAT

AES decrypt KAT

DRBG KAT

HMAC-SHA-1, HMAC-SHA-256, HMAC-512 KAT (covers SHA-1, SHA-256, and SHA-512 KATSs)
Integrity self-test (ECDSA P-521 w/ SHA-256 signature verification)

I 2.9.2 CONDITIONAL SELF-TESTS

DRBG Continuous Random Number Generator Test
SP 800-90A Section 11.3 DRBG Health Tests
Instantiate
Generate
Reseed
Uninstantiate
NDRNG Continuous Random Number Generator Test

Should the module fail a self-test, the module will return an error and inhibit all cryptographic
operations. Finally, an operator may invoke the power-up self-tests at any time by power-cycling the
GPC and then reloading module.

Tanium Cryptographic Module Page 17 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

S TANIUM N
Revision 0.66, 08/10/2016

I 2.10 GUIDANCE AND SECURE OPERATION

The Module meets overall Level 1 requirements for FIPS PUB 140-2. The sections below describe the
Crypto-officer and User guidance.

] 2.10.1 CRYPTO-OFFICE GUIDANCE

The Crypto-officer or operator responsible for configuring the operational environment upon which the
module runs must ensure FIPS compliant operation (as described in section 2.1.2, FIPS Mode of
Operation, of the Security Policy).

Additionally, the Crypto-officer is defined to be the operator responsible for loading the library, thus
when invoked by a calling application (either at library load or dynamically), the operating system loader
will load the module, causing it to automatically perform its power-up self-tests. Should the module fail
its power-up self-tests, the module set a status indicator and inhibit its cryptographic functions.

] 2.10.2 UseEr GUIDANCE

Once the operating system has been properly configured by the Crypto-officer (if needed), the Tanium
Cryptographic Module requires no special usage to operate in a FIPS-compliant manner. The module
utilizes only FIPS-Approved cryptographic algorithms. The User must assume responsibility for
managing all keys, as the module does not provide any persistent key storage. For AES-GCM, the
operator must reset the IV to the last one used in case the module’s power is lost and then restored.

I 2.11 MITIGATION OF OTHER ATTACKS

The Tanium Cryptographic Module does not claim to mitigate any attacks beyond the FIPS 140-2 Level 1
requirements for validation.

Tanium Cryptographic Module Page 18 of 18 © 2016 Copyright Tanium, Inc.
Security Policy All rights reserved.

